Telegram Group & Telegram Channel
Конфигурация: данные vs код

Существует два основных подхода к описанию конфигурации: использовать код на каком-то языке (возможно dsх) или описывать все через универсальные форматы (yaml, json).

Например большинство линтеров и форматеров используют конфигурацию через json файлы. Хотя в JS экосистеме происходит сдвиг в сторону написания конфигурации для таких инструментов в js файлы. Системы сборки чаще делают кодом, например gradle или классический Make, хотя тот же maven использует xml.

Оба подхода широко распространены даже в рамках одной задачи, но разных стеках. Выбор не всегда очевиден и любой разработчик, которому приходится его делать, находится какое-то время в замешательстве.

Конфигурация на данных кажется классной идеей и практически незаменима, когда нам надо шарить ее между разными экосистемами. Классный пример это openapi спека. Она нужна и на беке и во фронте и внешним клиентам, которые пишутся на бог знает чем. При том что писать ручками саму спеку еще тот геморрой, поэтому вокруг созданы целые языки (не тьюринг полные) типа typespec, которые умеют генерить openapi спеку.


@route("/stores")
interface Stores {
list(@query filter: string): Store[];
read(@path id: Store): Store;
}


Но у такого подхода есть и масса ограничений. Во-первых сразу забываем про синхронизацию с кодом. Если конфигурация содержит имена модулей, классов, в целом какие-то связи с кодом, то в lsp придется встраивать доп поддержку, что вообще врядли кто-то будет делать. Во-вторых, есть места, где нужно иметь какое-то кастомное поведение, типовая задача замутить что-то этакое во время сборки. Если у вас конфигурация описана данными, то вы физически не сможете реализовать кастомное поведение без расширение языка конфигурации. Такое тоже, кстати, встречается. Возьмите ansible, можно написать свои модули.

Если описывать все это кодом, то мы получаем возможность достаточно легко писать кастомную логику, у нас включается lsp, начинает работать автокомплит проверка типов и многое другое. Но пожалуй главная проблема, в том что такой уровень свободы приводит к ситуациям, когда конфигурация превращается в полноценный код, который хрен поймешь и который желательно еще и тестировать из-за его сложности. А уж отладку каких-нибудь хитрых штук многие вспоминают как в страшном сне.

Иногда это приводит к решению пойти третим путем. Создать под конфигурацию свой собственный язык, который и конфигурацию на выходе может дать и при этом позволяет делать больше и удобнее чем тот же json. Например terraform. Но это не самый легкий путь, потому что для него нужно писать целую экосистему инструментов, но для фундаментальных вещей, как мы видим, это работает. При этом даже терраформ довольно ограничен и есть альтернативные решения, где все по настоящему программируется.

Так и что выбирать и на что ориентироваться? Как будто универсального ответа нет, видно как инструменты постоянно прыгают туда сюда и часто есть альтернатива для тех кто хочет гибкость (язык) или наоборот строгость (данные) со всеми плюсами и минусами описанными выше

p.s. Лиспофилы щас бы сказали что у нас два в одном и конфигурация и код описываются данными. Но это немного лукавство, потому что код как данные в лиспах имеет значение только внутри самих лиспов при написании макросов. Для внешних систем это не данные, которые можно взять и использовать

Ссылки: Телеграм | Youtube | VK



tg-me.com/orgprog/335
Create:
Last Update:

Конфигурация: данные vs код

Существует два основных подхода к описанию конфигурации: использовать код на каком-то языке (возможно dsх) или описывать все через универсальные форматы (yaml, json).

Например большинство линтеров и форматеров используют конфигурацию через json файлы. Хотя в JS экосистеме происходит сдвиг в сторону написания конфигурации для таких инструментов в js файлы. Системы сборки чаще делают кодом, например gradle или классический Make, хотя тот же maven использует xml.

Оба подхода широко распространены даже в рамках одной задачи, но разных стеках. Выбор не всегда очевиден и любой разработчик, которому приходится его делать, находится какое-то время в замешательстве.

Конфигурация на данных кажется классной идеей и практически незаменима, когда нам надо шарить ее между разными экосистемами. Классный пример это openapi спека. Она нужна и на беке и во фронте и внешним клиентам, которые пишутся на бог знает чем. При том что писать ручками саму спеку еще тот геморрой, поэтому вокруг созданы целые языки (не тьюринг полные) типа typespec, которые умеют генерить openapi спеку.


@route("/stores")
interface Stores {
list(@query filter: string): Store[];
read(@path id: Store): Store;
}


Но у такого подхода есть и масса ограничений. Во-первых сразу забываем про синхронизацию с кодом. Если конфигурация содержит имена модулей, классов, в целом какие-то связи с кодом, то в lsp придется встраивать доп поддержку, что вообще врядли кто-то будет делать. Во-вторых, есть места, где нужно иметь какое-то кастомное поведение, типовая задача замутить что-то этакое во время сборки. Если у вас конфигурация описана данными, то вы физически не сможете реализовать кастомное поведение без расширение языка конфигурации. Такое тоже, кстати, встречается. Возьмите ansible, можно написать свои модули.

Если описывать все это кодом, то мы получаем возможность достаточно легко писать кастомную логику, у нас включается lsp, начинает работать автокомплит проверка типов и многое другое. Но пожалуй главная проблема, в том что такой уровень свободы приводит к ситуациям, когда конфигурация превращается в полноценный код, который хрен поймешь и который желательно еще и тестировать из-за его сложности. А уж отладку каких-нибудь хитрых штук многие вспоминают как в страшном сне.

Иногда это приводит к решению пойти третим путем. Создать под конфигурацию свой собственный язык, который и конфигурацию на выходе может дать и при этом позволяет делать больше и удобнее чем тот же json. Например terraform. Но это не самый легкий путь, потому что для него нужно писать целую экосистему инструментов, но для фундаментальных вещей, как мы видим, это работает. При этом даже терраформ довольно ограничен и есть альтернативные решения, где все по настоящему программируется.

Так и что выбирать и на что ориентироваться? Как будто универсального ответа нет, видно как инструменты постоянно прыгают туда сюда и часто есть альтернатива для тех кто хочет гибкость (язык) или наоборот строгость (данные) со всеми плюсами и минусами описанными выше

p.s. Лиспофилы щас бы сказали что у нас два в одном и конфигурация и код описываются данными. Но это немного лукавство, потому что код как данные в лиспах имеет значение только внутри самих лиспов при написании макросов. Для внешних систем это не данные, которые можно взять и использовать

Ссылки: Телеграм | Youtube | VK

BY Организованное программирование | Кирилл Мокевнин




Share with your friend now:
tg-me.com/orgprog/335

View MORE
Open in Telegram


Организованное программирование | Кирилл Мокевнин Telegram | DID YOU KNOW?

Date: |

Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.

What Is Bitcoin?

Bitcoin is a decentralized digital currency that you can buy, sell and exchange directly, without an intermediary like a bank. Bitcoin’s creator, Satoshi Nakamoto, originally described the need for “an electronic payment system based on cryptographic proof instead of trust.” Each and every Bitcoin transaction that’s ever been made exists on a public ledger accessible to everyone, making transactions hard to reverse and difficult to fake. That’s by design: Core to their decentralized nature, Bitcoins aren’t backed by the government or any issuing institution, and there’s nothing to guarantee their value besides the proof baked in the heart of the system. “The reason why it’s worth money is simply because we, as people, decided it has value—same as gold,” says Anton Mozgovoy, co-founder & CEO of digital financial service company Holyheld.

Организованное программирование | Кирилл Мокевнин from jp


Telegram Организованное программирование | Кирилл Мокевнин
FROM USA